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A class of “exponential schemes” used for singular perturbation problems is taken and 
finite difference schemes for inviscid flow with shocks is derived from them. In particular, 
exponential schemes are formulated for steady viscous flow in a variable area duct using both 
a one-equation model (with the physical viscous terms) and the Euler equations (with artificial 
viscosity). Upon taking the limit as the viscosity coefficient goes to zero, “exponentially 
derived switching (EDS) schemes” are obtained which switch the direction of finite 
differencing based upon characteristic directions of the reduced problem. For the Euler 
equations some of the EDS schemes can be identified as flux vector splitting, the split coef- 
ficient matrix method, and a scheme of Huang. Some aspects of uniqueness of linite difference 
solutions are discussed. 

1. INTRODUCTION 

In this paper we study a certain class of finite difference schemes applied to steady 
state one-dimensional inviscid flow with shocks. We study schemes for duct flow 
using both a one-equation model and the Euler equations. The schemes we consider 
are derived from the so-called “exponential schemes” used for singular perturbation 
problems. Briefly, exponential schemes are constructed by piecing together locally 
exact exponential solutions of a modification of the original differential equation. For 
example, the modification may consist of the replacement of the coefficients of the 
original differential equation by piecewise constant approximations on subintervals of 
a mesh. These exponential schemes often yield better numerical approximations for 
thin boundary and interior layers than do polynomial schemes, and may also be free 
of “cell Reynolds number” restrictions. This basically means that solutions without 
numerical oscillations can be obtained when the mesh size is relatively large and the 
singular perturbation parameter E is small. 

To our knowledge, the first such exponential scheme was actually given in 1955 by 
Allen-Southwell, who applied it to compute two-dimensional incompressible viscous 
flow over a cylinder using a certain splitting technique [ I]. Dennis [ 21 extended the 
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Allen-Southwell technique to treat a slightly wider class of problems, and showed its 
second-order accuracy. In [3], Allen further discussed the undesirability of 
polynomial schemes for certain types of differential equations. Dennis [4] observed 
that the Allen-Southwell technique is free of a cell Reynolds number restriction, and 
that it reduces to simple upwinding in the limit of infinite Reynolds number. Similar 
ideas were discussed by Spalding [5]. 

As opposed to polynomial schemes, exponential schemes can yield uniform error 
estimates. This means that the discretization error goes to zero as some power of h, 
the mesh size, independent of the size of E. In particular, the Allen-Southwell scheme 
has been analyzed [6-S] for a class of linear problems and shown to be uniformly 
first-order accurate. Recently, several investigators have applied exponential schemes 
to the driven cavity problem [9, lo]. However, it is still not clear whether such 
schemes can be effectively used for a spectrum of multidimensional fluid problems. 

Typically, for fluid dynamics applications, the small parameter E is the viscosity, 
and one is interested in both the small E case (yielding boundary or interior layers) 
and the E --t 0 limit (inviscid flow with shocks). In the present paper, we investigate 
what happens when the formal E + 0 limit of a class of exponential schemes is applied 
to the reduced problem of shocked inviscid flow. We call such schemes “exponen- 
tially derived switching schemes” (EDS schemes) since they are the limit of exponen- 
tially based schemes and they involve switching the direction of finite differencing 
(“upwinding” in some sense) based on the computed solution itself [26, p. 1831. We 
note that Engquist and Osher [ 1 l-141 have introduced and analyzed a different class 
of switching schemes. 

We first motivate the derivation of EDS schemes by considering the steady state 
Burgers equation. We then consider a one-equation model for inviscid flow in an 
expanding duct with a standing shock. For this equation we obtain numerical results 
for two different EDS schemes. For one of these schemes an existence and uniqueness 
result has been established [ 151. 

Considerations of uniqueness are of interest to use for the following reasons. It is 
known that for many viscous fluid dynamics problems the partial differential 
equations possess a unique solution, but it is known that in the inviscid limit there 
may often be many weak solutions (e.g., solutions containing discontinuities). In the 
latter case an additional restriction, called the entropy condition, must be enforced in 
order to obtain. the limit of viscous solutions as E + 0. The uniqueness situation is 
even more complicated for the approximating finite difference problem. Here, 
consistent approximations to either the viscous or inviscid problem may possess more 
than one finite difference solution [ 161. In some eases it is difftcult to identify which 
solution best approximates the flow field. It is therefore advantageous to compute 
with a scheme that possesses only one solution, or at least only one solution with the 
correct properties. We emphasize, however, that taking the limit of exponential 
schemes for the viscous problem certainly does not guarantee that the resulting 
inviscid scheme will provide a unique solution. 

Finally, we consider EDS schemes for the system of Euler equations describing 
steady one-dimensional duct flow. Again we obtain numerical results for several EDS 
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schemes and show that the flux vector splitting scheme [ 171, the split coefficient 
method [ 181 and a recent scheme of Huang [ 191 are actually EDS schemes. For 
time-dependent problems this indicates that the switching properties of EDS schemes 
are related to characteristic directions. 

2. BURGERS EQUATION 

In order to motivate the exponentially derived switching (EDS) schemes for one- 
dimensional duct flow we first consider the steady state Burgers equation 

uu, - EU,, = 0 

u(0) = 1, u(1) = -1 
(2.1) 

whose exact solution is given by 

u(x) = -K tanh(K(x - .5)/(2&)) 

where K tanh(K/4s) = 1. 
The corresponding inviscid (E = 0) equation is 

uu, = (uZ/2), = 0 (2.2) 

with the same boundary conditions as (2.1). Equation (2.2) does not admit smooth 
solutions satisfying the boundary conditions, but does admit generalized (weak) 
solutions with jump discontinuities. In fact, (2.2) does admit a solution 

(2.3) 

which is the unique inviscid limit of solutions of (2.1). 
We now define two formally second-order accurate exponential schemes for (2.1) 

and use them to derive EDS schemes for (2.2). They are 

and 

~(Uj+,-U:~,)-~(ri+,Ui,,-2riUi+rj-,Ui~,)=O (2.5 1 

where ri = (uih/2s) coth (uih/2e). Scheme (2.4) is an adaptation of a scheme of 
Allen and Southwell [I], and (2.5) is a modification of (2.4) in conservation form 
1201. 

We proceed to construct EDS schemes for (2.2) by taking the formal limit of (2.4) 
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and (2.5) as E + 0. Noting that lim Ed,, y coth( y/s) = y sgn( y) = ] y ] , we obtain respec- 
tively 

ui(Ui+ 1 - ui- 1) - I u*l (“i+ 1 - 2Ui + ui-]) = 0 (2.6) 

and 

2 
ui+ 1 -&,-2(/ ui+ll”i+l-21uilUi+IUi-~JUi-*)=0. (2.7) 

We observe that the viscous terms do not vanish in the E -+ 0 limit and therefore 
represent a kind of artificial viscosity; indeed, Eqs. (2.6) and (2.7) may be regarded 
as difference schemes for UU, = (h/2) ] u I u,, and UU, = (h/2)(] u I u),, , respectively. 
We say that (2.6) has “one switching point” since it depends on the sign of u at the 
single point i. Similarly (2.7) has “three switching points.” We note that (2.6) reduces 
to 

Ui(Ui - ui- *) = 0 if ui>O 

Ui(Ui+, - UJ = 0 if ui<O 
(2.8) 

which is a standard “upwind” scheme with the differencing direction switching on the 
sign of ui. On the other hand, (2.7) is not an upwind scheme. While (2.6) possesses 
sharp shock profiles, it also has multiple solutions. In particular, among other 
solutions it admits the family of solutions u,, = a.. = uiO = 1, uiO+, = ... = u,+i = -1 
for any 0 < i, < n. By contrast, it can be shown that scheme (2.7) possesses a unique 
solution whose components are monotonically decreasing and antisymmetric with 
respect to x = i. We note that the existence, uniqueness, and properties of scheme 
(2.5) for the related viscous problem are established in [20] using the theory of M- 
functions. So in a sense we may think of the uniqueness of the solution of (2.7) as 
being “inherited” from scheme (2.5). We note that certain schemes for time- 
dependent problems, namely, monotone schemes in conservation form, have been 
shown by Crandal and Majda [21] to possess a solution converging to the unique 
inviscid solution satisfying the entropy condition. We note that the time-dependent 
version of (2.7) 

u;+’ zzz At 
u; - --& <u;:, - -2~u~~u:+~u:~,&4~,) (2.9) 

is a weakly monotone scheme with restricted CFL condition I uil At/h < f. 
Numerical results for (2.6) and (2.7) with n = 9, 19, 39 (h = &-, &, &) are given 

in Figs. 2-l and 2-2, respectively. As scheme (2.6) possesses multiple solutions, we 
have shown only the antisymmetric solution most like those for scheme (2.7). We 
note that, although (2.7) has a unique solution, it tends to give somewhat smeared 
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FIG. 2-l. Comparison of solutions to scheme (2.6) with exact solution. Burgers equation. One 
switching point scheme. 

profiles (approximately a “five point shock”). Also, if we write (2.7) as a system of 
difference equations F,(u) = 0, i = l,..., n, then Cr= r Ff appears to have many local 
minima. Thus when a time asymptotic method is used to solve (2.7), often the iterates 
will appear to be converging to a local minimum, and then after many iterations will 
eventually move away from the minimum and converge to the unique solution. 
Similarly, any particular solution to scheme (2.6) is not easy to get because of the 
presence of multiple solutions. 

FIG. 2-2. Comparison of solutions to scheme (2.7) with exact solution. Burgers equation. Three 
switching point scheme. 
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3. DUCT FLOW-ONE-EQUATION MODEL 

A. Formulation 

We now consider one-dimensional flow in a duct of variable cross-sectional area 
A(x), o<xxxx,,,. First formulating the problem in the usual system form for 
steady, non-heat-conducting, viscous flow, we have 

Viscous system: .Fx + .% = &F; (3.1) 

where 

and p is density, u is velocity, E = e + u2/2, where e is specific internal energy, p is 
pressure, and E is the viscosity coefficient (here assumed constant). The pressure is 
given by the perfect gas equation of state, p = (v - 1) pe, where the constant y is the 
ratio of specific heats. Boundary conditions are discussed later. As before, we 
consider the viscous problem (3.1) as a tool to get schemes for the inviscid problem, 
which is 

Inviscid system: .Fx+.Y’=O. (3.2) 

It is possible to directly integrate the first and third components of (3.1) to give 
puA = c, e + u2/2 +p/p - EU,/P = H, where c and H are constants to be evaluated at 
a boundary (where we shall assume u, = 0). These results can be combined with the 
second component of (3.1) to give a single equation for u as 

Viscous model: @u, - EU,, + g = 0 (3.3) 

where @= y(fi-&2)/A, E=(y+ l)c/(2y)-CA’, E=(y- l)cH/y, and 
g’= -(y - 1) c(H/u - u/2) A’/A2. Taking the inviscid limit (E + 0) and rewriting in 
conservation form, we obtain 

Inviscid model: r,+g=O (3.4) 

where r = y(Du + E/u)/A, D = (y + 1) c/(2y), E = (y - 1) cH/y, g = cywl ‘/A2 and D, 
E and H are now constants. We consider the single equation models (3.3) and (3.4) 
in this section, returning to the system formulation (3.1) and (3.2) in Section 4. We 
note that in the inviscid case E = 0 it can be shown by a simple computation that the 
velocity u is sonic (Mach one) at u = a z (E/D)“*. 

We restrict ourselves to the case where the flow is from left to right (u > 0) and the 
duct area A(x) is increasing (A’ > 0). To obtain a shocked flow we specify supersonic 
inflow (U > a) at x = 0 and subsonic outflow (U < a) at x = xmax. A discussion of the 
boundary conditions appropriate for solving (3.2) in this case is given in 1221. 
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For the single equation models (3.3) and (3.4), it appears to be correct to specify 
40) and 4~~~). 

As an aside, we note that a useful model for testing time-dependent numerical 
methods can be formed by taking 

ut + r(u, x), + g = 0 (3.4a) 

which incorporates a non-physical time evolution, but reduces to the correct steady 
state physics. This model provides a considerably more demanding test of numerical 
schemes than does Burgers equation. 

B. Exponential Schemes for the Viscous Problem 

We formulate two types of EDS schemes for (3.4) by first writing approximations 
(analogous to (2.4) and (2.5) for Burgers equation) for the finite E case, Eq. (3.3) 
and then taking the E -+ 0 limit. We first restate the “non-conservation” form (3.3) 

@,-&u,,+~=O (3.5) 

and then rewrite in “conservation form” (making an approximation by neglecting the 
dependence of 0” on x; this dependence disappears in the E -+ 0 limit) 

Fx - EU,, + G = 0 

where r’= y(D”u + ,??/u)/A and G = g + r;l’/A. 

(3.6) 

As before, we discretize as h = x,,,/(n + l), xi = ih, and consider u(xi) = ui to be 
an approximation to u at xi. We set u,, = u(x = 0) and u,, , = u(x = xmaJ An Allen- 
Southwell type approximation for (3.5) (patterned after (2.4) for Burgers equation) is 

(3.7) 

where 

Alternatively, a scheme in conservation form for (3.6) analogous to (2.5) is given by 

~('i+1-ii-l)-~(~i+IUi+l-2TiUi+~i_lUi~*)+Gi=O. (3.8) 

A further variation of (3.8) is obtained by noting that u,, = (U - a)XX for 
a = constant. Here we take a to be the previously mentioned value of u at which the 
inviscid flow is exactly sonic, a = (E/D) “* This variation is necessary for the proof . 
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of existence and uniqueness given in [ 151 to go through. This alternate scheme for the 
viscous problem (which will lead to our principal EDS scheme) is 

-~i-1)-~(Ti+I(Ui+i-U)-2T,(Ui-U) 

+Ti-l(ui-l -a))+Gi=O. (3.9) 

C. EDS Schemes for the Inviscid Problem 

We now take the formal E + 0 limit of schemes (3.7) and (3.9) to obtain exponen- 
tially derived switching (EDS) schemes for the inviscid model (3.4). Noting first that 

l&h(eTi) = q sgn(q,) = + [qil, q = Y(D - EIu2)/A, 

we get from (3.7) the EDS scheme 

+ (G-%ii=O (3.10) 

and from (3.9) the EDS scheme (with “shifting” by the sonic velocity a) 

&tri+I -lil)-+(lqi+ll C”i+l -a>-2 19il CUiea) 

+ l41- 1 I C”i- I - a>> + gi = O* (3.11) 

Scheme (3.10) has one switching point and scheme (3.11) has three switching points. 
We note that (3.11) is not an upstream scheme in the sense of Harten, Lax and van 
Leer [23]. However, (3.11) is conservative and also approximates 

rx - W)(lq I (u - a>>,, + g = 0. 

D. Numerical Results 
We now exhibit numerical results for duct flow obtained with the one switching 

point EDS scheme (3.10) and the three switching point EDS scheme (3.11). We use 
the model problem introduced in [22] in which the duct area is given by A(x) = 
1.398 + 0.347 tanh(0.8x - 4), xmax = 10. Although we specify only U, = u(0) and 
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u ff+1 = 4Tnax) in obtaining our results for the single-equation model, we give more 
information here for reference later. 

u(O) = l.299 

p(0) = 0.502 

Duct flow problem: 
e(0) = 1.897 

u(xma,) = 0.505 

p(x,,,) = 0.776 

y = 1.4. 

(3.12) 

For these conditions, an exact solution to (3.4) and hence to (3.2), can be 
constructed in which a single shock of shock Mach number 1.71 stands at x = 4.816. 
Our numerical results in this section were obtained by using Newton’s method to 
solve the system of finite difference equations, (3.10) or (3.1 l), which hold for 
i = 1, 2,..., n, subject to the specified boundary values u,, and u,+ r. Our initial guess 
for Newton’s method was a linear interpolation between u0 and u,,, ]. 

Our results for IZ = 9, 19 and 39 obtained with schemes (3.10) and (3.11) are 
shown in Figs. 3-l and 3-2, respectively. In each case, the exact solution of (3.2) is 
shown for comparison. In our opinion, the results given in Fig. 3-2 for the three 
switching point scheme (3.11) are too “smeared out” and do not represent 
particularly good approximations to the exact solution. However, this scheme enjoys 
the property that only one solution exists with all ui > 0 [ 151. (Although solutions do 
indeed exist with at least one ui < 0, such “spurious” solutions are readily iden- 
tifiable). Also there are no overshoots or undershoots (oscillations). By contrast, the 

I _ 

x 
0 I0 

FIG. 3-1. Comparison of solutions to scheme (3.10) with exact solution. Duct flow-one-equation 
model. One switching point scheme. 
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I x 
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FIG. 3-2. Comparison of solutions to scheme (3.11) with exact solution. Duct flow--one-equation 
model. Three switching point scheme. 

solutions shown in Fig. 3-l for the one switching point scheme (3.10) are “sharper” 
than those for (3.11). However, more than one solution with ui > 0 exists, for fixed n, 
a shown in Fig. 3-3. This type of multiple solutions is particularly troublesome, since 
(without knowledge of the exact solution) it is difficult to distinguish which solution 
is the best approximation. We note that, for comparison purposes, the popular 
MacCormack predictor-corrector scheme [ 241 (with a little artificial viscosity added 
[22]) when applied to (3.2) gives results whose sharpness is comparable to scheme 
(3.10) but with overshoots and undershoots. 

2. 

I -.x 

0 I0 

FIG. 3-3. Multiple solutions to scheme (3.10). Duct flow+ne-equation model. One switching point 
scheme. Multiple solutions. 
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Finally, we have also done some computation for a stronger shock case, the results 
of which are qualitatively and quantitatively similar and are thus not presented. For 
this case we note that, using Newton’s method, the unique solution to scheme (3.11) 
with all ui > 0 is not easy to obtain. We succeeded only by using “damping” and 
starting with a “super” solution. This super solution was obtained using the 
combinatorial method of [ 251. 

4. DUCT FLOW-SYSTEM FORMULATION 

We now return to consider three specific exponentially derived switching schemes 
for the system form of the gas dynamics equations, (3.2). While we consider these 
schemes from the point of view of steady flow, we will show that they are directly 
related (and sometimes identical) to some already known schemes for time-dependent 
gasdynamics. 

A. One Switching Point Scheme 

We first consider a variant of a scheme given by Doolan, Miller and Schilders 
(DMS), Ref. [26], for the system: 

u(x) u, + b(x) u -f(x) = EZU,, (4-l) 

where u and f are n-vectors and a and b are n x n matrices. The DMS scheme, which 
is for linear problems without turning points (changes in sign of the eigenvalues of a), 
is given (for the case b(x) = 0) by 

(4.2) 

This method is apparently a straightforward generalization of the Allen-Southwell 
scheme, Eq. (2.4), and has to our knowledge seen little application. Attempts to apply 
this scheme to the gasdynamics equations, (3.1), encounter several difftculties. Of 
course, (3.1) is nonlinear. Also, for the case in which a “shock” occurs, there is a 
turning point. Furthermore, when (3.1) is rewritten in the form (4.1), we obtain 

Au, + F = EBV,, (4.3) 

where U is the “conservation vector” U = A@, pu, pE)=, x = [a;TlXJJ, and 
B = [a.J?/aZJ]. Unfortunately, B is not invertible and thus (4.3) cannot be put in the 
form (4.1). 

We rectify this situation by considering system (3.1) with the physical viscous term 
EU, replaced by the artificial viscous term EZU,,. Smoller and Conley [27, 281 have 
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investigated which artificial viscous terms will lead to the correct limit solutions as 
E + 0. Foy [29] has shown that, for weak shocks, the addition of the artificial viscous 
term EIU,, to a hyperbolic system of conservation laws results in a system which 
gives the correct inviscid behavior in the limit F + 0. The system we will consider is 
thus 

Au, $ Ji? = EIU,, (4.4) 

where 

0 
A= (y-&,2 (3 A4 u y-l . 

u(-ye + u2(y - 2)/2) ye + u2(3 - 2y)/2 yu I 

We note that x is certainly diagonalizable, since when the term U, is added to the left 
side of (4.3) and E = 0, the resulting time-dependent gas dynamics system is hyper- 
bolic. This diagonalization is crucial in evaluating the matrix hyperbolic cotangent 
given in (4.2), which is done as follows. Let A= PDP-‘, where D is a diagonal 
matrix with the eigenvalues of 2 on the diagonal, D = Diag(u, u - u*, u + a*), where 
a* = (y(y - 1) e)“’ is the speed of sound. P is a matrix whose columns are the 
corresponding right eigenvectors of 2. Then coth x = P(coth D) Pp ‘, where coth D = 
Diag(coth U, coth(u - a*), coth(u + a*)). 

Although scheme (4.2) was not designed for nonlinear problems with turning 
points, we have tried taking the E + 0 limit of this scheme and applying the resulting 
exponentially derived switching scheme 

to the problem (3.12). Here IDI = Diag(]ui], (ui -a* 1, ]ui + a* I). We note that for 
supersonic flow u > a*, (4.5) reduces to pure “upwinding” (backward differencing) 
since IDI = D and thus Qi = (PDP-‘)i =xi. 

Scheme (4.5) is a one switching point scheme that switches the nature of the finite 
differencing based only upon the signs of the eigenvalues of x at the one point i. 
Indeed, these eigenvalues are just the characteristic speeds dxldt = u, u - a *, u + a * 
for the associated hyperbolic time-dependent problem. This scheme is in fact related 
to the split-coefficient-matrix (SCM) method [ 181 as follows. If (3.1) is modified to 
the time-dependent non-conservation form W, + D, W, + E, = EIW,,, where 
W= @, u, e)r and D, = [LF/cYQ], an Allen-Southwell type approximation is made, 
and the s--t 0 limit is taken, the SCM method is recovered. 

Not surprisingly, (4.5) does not appear to yield decent physical approximations to 
problem (3.12). This failure is apparently related to the fact that (4.5) does not 
conserve the correct physical quantities across a shock. When a time-dependent 
computation using (4.5) (plus the physically correct time-dependent term U,) was 
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started from the exact solution, it did not coverge to any reasonably approximation. 
We have also been unsuccessful in obtaining decent results for our problem with the 
aforementioned SCM method. (In these tests, the system boundary conditions used 
were those discussed in Section 3A.) 

B. Three Switching Point Scheme 
In view of the above results, we modify (4.5) in a manner similar to that which led 

from the approximation (2.4) to the approximation (2.5) for Burgers equation. 
Namely, our new scheme for (4.4) is given as 

ri = 
(4.6) 

and in the limit E -+ 0 we get the corresponding EDS scheme 

~(~+1-Y;-l)+~=~[(Q~)i+l-2(Qu)i+(Qu)i-,I. (4.7) 

Scheme (4.7) has three switching points since it depends on the eigenvalues of 2 at 
the three points i - 1, i, i + 1. Using the same uniform spatial discretization described 
before, the system boundary conditions previously discussed, and a time-dependent 
computation, we obtained the steady state solutions shown in Fig. 4-1 for n = 9, 19 
and 39. 

I x 
0 I0 

FIG. 4-1. Comparison of solutions to scheme (4.7) with exact solution. Duct flow-system. Three 
switching point scheme. 
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Again, we feel that the computed solutions are quite smeared out and do not 
represent particularly good approximations. However, the computed solution has no 
overshoots. We note in passing that if q in (4.7) is replaced by $(q+ i + g-i), 
slightly better results can be obtained. 

It is quite interesting to note that the three switching point scheme given in (4.7) is 
exactly equivalent to the flux vector splitting (FVS) method of Steger and Warming 
for one particular splitting of the eigenvalues and one particular spatial discretization 
[ 17, p. 2701. To see this we must use the fact, crucial to FVS, that the gas dynamics 
equations are homogeneous of degree one. Among other things, this implies that 
flu U = AU = jr. Using this homogeneity property we may rewrite (4.7) as 

+--Y)i+,-(F-Y)i+(F+~)i-(~+.Y)j-,}+~~=O (4.8) 

where S = QU. We can then identify this as the FVS scheme 

where 

and A and V are forward and backward difference operators. 

C. Two Switching Point Schemes 

Finally, we consider two alternatives to (4.2) as approximation schemes for (4.1). 
The first is a scheme due to El-Mistikawy and Werle 1301 which has been analyzed 
in [3 I]. When extended to approximate system (4.1), this scheme (with b(x) = 0) is 

C”i+leui) +ai_l,2 (“i-ui-l) 

h h 

=s {Yi+l/2C”i+l -“i)-Yi-l/*(ui-ui-l)} (4.9) 

where 

aif1/2 = (ai + ‘i* ,Y2 and Yii l/2 = 
‘it II2h coth 

2E 
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When this scheme is applied to gas dynamics system (4.4) and the E+ 0 limit is 
taken, we obtain the two switching point EDS scheme 

++pi+, + Vi-,)-O. (4.10) 

We note that this scheme is not in conservation form. When applied to the duct flow 
problem (3.12), we obtained solutions with n = 9, 19 and 39 in which the shock 
profile was sharp but the shock position was too far to the right. 

We believe that the poor results obtained with the above scheme and with scheme 
(4.5) are due to lack of conservation. In seeking to find a two switching points EDS 
scheme that conserves, we attempt to construct an artificial viscosity that will lead us 
to the scheme of Huang [ 191. We thus consider the following alternative to (4.4) 

Au, + .3’ = &(Z ’ (Au),), . (4.11) 

An exponentially-based approximation scheme for (4.11) is 

I x 
a 10 

FIG. 4-2. Comparison of solutions to scheme (4.13) with exact solution. Duct flow-system. Two 
switching point scheme. 
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Taking the e + 0 limit and using the homogeneity property ,&U = ,~F, we obtain the 
two switching point EDS scheme 

-sgn(Ai~,/,)(,~--.~~,)}. (4.13) 

We see that this scheme is essentially the same as one introduced by Huang [ 191 and 
apparently gives shock profiles with at most one mesh point interior to the shock. 
Huang derived the scheme by analogy with an upwind scheme for Burgers equation. 
In Fig. 4-2 we show computational results for scheme (4.13) applied to the shock 
problem (3.12). Comparing with Fig. 4-l for scheme (4.7), we see that (4.13) does 
indeed give sharper shock profiles than does (4.7). Moreover, there are no 
computational oscillations and computational efforts to find multiple solutions 
similar to those discussed in Section 3 were unsuccessful. (We note, however, that the 
time-dependent method used for the systems in Section 4 are considered to be less 
likely than in Newton’s method, as used in Section 3, to find multiple solutions [ 161.) 
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